Cookies on the OMEGA websites
We use cookies on this website, these cookies are essential for the website to work correctly.If you continue without changing your settings, we'll assume that you are happy to receive all cookies on this website.To find out more information about these cookies please click here.
Basket  |  Contact  |  Help  | 
Free Phone0800 488 488
International+44(0) 161 777 6611

Your One-Stop Source for Process Measurement & Control!


Introduction to flow Measurement with Rotameters

A rotameter flow meter is used to measure the flowrate of liquids and gases. The rotameter consists of a plastic, metal or glass tube and float. The float response to flowrate changes is linear, and a 10-to-1 flow range or turndown is standard.

In the case of OMEGA® laboratory rotameters, far greater flexability is possible through the use of correlation equations. The rotameter is popular because it has a linear scale, a relatively long measurement range, and low pressure drop. It is simple to install and maintain.

Glass tube rotameter

Learn more about rotameters

Working principle of rotameters

How to choose a rotameter

  • What is the minimum and maximum flow rate for the flow meter?
  • What is the minimum and maximum process temperature?
  • What is the size of the pipe?
  • Would you like a direct reading rotameter or is a look up table acceptable?
  • What accuracy do you need?
  • Do you require a valve to regulate the flow?
  • Will there be back pressure?
  • What is the maximum process pressure?
The rotameter is the most widely used variable area flow meter because of its low cost, simplicity, low pressure drop, relatively wide rangeability, and linear output. Its operation is simple: in order to pass through the tapered tube, the fluid flow raises the float. The greater the flow, the higher the float is lifted. In liquid service, the float rises due to a combination of the buoyancy of the liquid and the velocity head of the fluid. With gases, buoyancy is negligible, and the float responds mostly to the velocity head.

In a rotameter (Figure 2-15), the metering tube is mounted vertically, with the small end at the bottom. The fluid to be measured enters at the bottom of the tube, passes upward around the float, and exits the top. When no flow exists, the float rests at the bottom. When fluid enters, the metering float begins to rise.

The float moves up and down in proportion to the fluid flow rate and the annular area between the float and the tube wall. As the float rises, the size of the annular opening increases. As this area increases, the differential pressure across the float decreases. The float reaches a stable position when the upward force exerted by the flowing fluid equals the weight of the float. Every float position corresponds to a particular flowrate for a particular fluid's density and viscosity. For this reason, it is necessary to size the rotameter for each application. When sized correctly, the flow rate can be determined by matching the float position to a calibrated scale on the outside of the rotameter. Many rotameters come with a built-in valve for adjusting flow manually.

Several shapes of float are available for various applications. One early design had slots, which caused the float to spin for stabilizing and centering purposes. Because this float rotated, the term rotameter was coined.

Rotameters are typically provided with calibration data and a direct reading scale for air or water (or both). To size a rotameter for other service, one must first convert the actual flow to a standard flow. For liquids, this standard flow is the water equivalent in gpm; for gases, the standard flow is the air flow equivalent in standard cubic feet per minute (scfm). Tables listing standard water equivalent gpm and/or air scfm values are provided by rotameter manufacturers. Manufacturers also often provide slide rules, nomographs, or computer software for rotameter sizing.

Choose the right type of rotameter for your application

Glass Tube Flow meters With Magnifying Front Shield can work with high temperature Glass Tube Rotameters
The basic rotameter is the glass tube indicating-type. The tube is precision formed of borosilicate glass, and the float is precisely machined from metal, glass or plastic. The metal float is usually made of stainless steel to provide corrosion resistance. The float has a sharp metering edge where the reading is observed by means of a scale mounted alongside the tube. End fittings and connections of various materials and styles are available. The important elements are the tube and float, often called the tube-and-float combination, because it is this portion of the rotameter which provides the measurement. In fact, similar glass tube and stainless steel float combinations are generally available, regardless of the type of case or end fittings the application can demand, so as best to meet customer requirements.

The scale of the rotameter can be calibrated for direct reading of air or water, or it may have a scale to read a percent of range or an arbitrary scale to be used with conversion equations or charts. Safety-shielded glass tube rotameters are in general use throughout industry for measuring both liquids and gases. They provide flow capacities to about 60 GPM, and are manufactured with end fittings of metal or plastic to meet the chemical characteristics of the fluid being metered. The only fluids for which these meters are not suited are those which attack glass metering tubes, such as water over 90°C (194°F), with its high pH which softens glass; wet steam, which has the same effect; caustic soda, which dissolves glass; and hydrofluoric acid, which etches glass. The primary limitations of general purpose rotameters are the pressure and temperature limits of the glass metering tube. Small, 6 mm (1/4") tubes are suitable for working pressures up to 500 psig, but the operating pressure for a large 51 mm (2") tube may be as low as 100 psig. The practical temperature limit for glass rotameters is 204°C (400°F), although operation at such high temperatures substantially reduces the operating pressure of the meter. In general, there is a linear relationship between the operating temperature and pressure.
Metal Frame Rotameters are ideal for industrial applications Metal Tube Flow meters
For higher pressures and temperatures beyond the practical range of glass tubes, metal tubes are used. These are usually manufactured in aluminim, brass or stainless steel. The position of the piston is determined by magnetic or mechanical followers that can be read from the outside of the metal metering tube. Similar to glass tube rotameters, the spring-and-piston combination determines the flowrate, and the fittings and materials of construction must be chosen so as to satisfy the demands of the applications. These meters are used for services where high operating pressure or temperature, water hammer, or other forces would damage glass metering tubes. Spring and piston flow meters can be used for most fluids, including corrosive liquids and gases. They are particularly well suited for steam applications, where glass tubes are unacceptable.
All Plastic Rotameter are the perfect choice for corrosive gas or liquids Heavy Duty/Industrial Pressure Transducers
Heavy Duty/Industrial Pressure transducers feature a much more rugged enclosure than other transducers. They are designed to accommodate heavy industrial environments. They also often feature a scalable 4-20mA transmitter that provides much greater immunity to electrical noise which is not uncommon in industrial environments.

Frequently Asked Questions


Design Variations

A wide choice of materials is available for floats, packing, O-rings, and end fittings. Rotameter tubes for such safe applications as air or water can be made of glass, whereas if breakage would create an unsafe condition, they are provided with metal tubes. Glass tubes are most common, being precision formed of safety shielded borosilicate glass.

Floats typically are machined from glass, plastic, metal, or stainless steel for corrosion resistance. Other float materials include carboloy, sapphire, and tantalum. End fittings are available in metal or plastic. Some fluids attack the glass metering tube, such as wet steam or high-pH water over 194°F (which can soften glass); caustic soda (which dissolves glass); and hydrofluoric acid (which etches glass).

Floats have a sharp edge at the point where the reading should be observed on the tube-mounted scale. For improved reading accuracy,

T9904-07_Fig.17 a glass-tube rotameter should be installed at eye level. The scale can be calibrated for direct reading of air or water, or can read percentage of range. In general, glass tube rotameters can measure flows up to about 60 gpm water and 200 scfh air.

A correlation rotameter has a scale from which a reading is taken (Figure 2-15). This reading is then compared to a correlation table for a given gas or liquid to get the actual flow in engineering units. Correlation charts are readily available for nitrogen, oxygen, hydrogen, helium, argon, and carbon dioxide. While not nearly as convenient as a direct reading device, a correlation meter is more accurate. This is because a direct-reading device is accurate for only one specific gas or liquid at a particular temperature and pressure. A correlation flow meter can be used with a wide variety of fluids and gases under various conditions. In the same tube, different flow rates can be handled by using different floats.

Small glass tube rotameters are suitable for working with pressures up to 500 psig, but the maximum operating pressure of a large (2-in diameter) tube may be as low as 100 psig. The practical temperature limit is about 400°F, but such high-temperature operation substantially reduces the operating pressure of the tube. In general, there is a linear relationship between operating temperature and pressure. Glass-tube rotameters are often used in applications where several streams of gases or liquids are being metered at the same time or mixed in a manifold, or where a single fluid is being exhausted through several channels (Figure 2-17). Multiple tube flow meters allow up to six rotameters to be mounted in the same frame.

It also is possible to operate a rotameter in a vacuum. If the rotameter has a valve, it must be placed at the outlet at the top of the meter. For applications requiring a wide measurement range, a dual-ball rotameter can be used. This instrument has two ball floats: a light ball (typically black) for indicating low flows and a heavy ball (usually white) for indicating high flows. The black ball is read until it goes off scale, and then the white ball is read. One such instrument has a black measuring range from 235-2,350 ml/min and a white to 5,000 ml/min.

For higher pressures and temperatures beyond the practical range of glass, metal tube rotameters can be used. These tubes are usually made of stainless steel, and the position of the float is detected by magnetic followers with readouts outside the metering tube.

Metal-tube rotameters can be

T9904-07_Fig.18 used for hot and strong alkalis, fluorine, hydrofluoric acid, hot water, steam, slurries, sour gas, additives, and molten metals. They also can be used in applications where high operating pressures, water hammer, or other forces could damage glass tubes. Metal-tube rotameters are available in diameter sizes from K in to 4 in, can operate at pressures up to 750 psig, temperatures to 540°C (1,000°F), and can measure flows up to 4,000 gpm of water or 1,300 scfm of air. Metal-tube rotameters are readily available as flow transmitters for integration with remote analog or digital controls. Transmitters usually detect the float position through magnetic coupling and are often provided with external indication through a rotatable magnetic helix that moves the pointer. The transmitter can be intrinsically safe, microprocessor-based, and can be provided with alarms and a pulse output for totalization.

Plastic-tube rotameters are relatively low cost rotameters that are ideal for applications involving corrosive fluids or deionized water. The tube itself can be made from PFA, polysulfone, or polyamide. The wetted parts can be made from stainless steel, PVDF, or PFA, PTFE, PCTFE, with FKM or Kalrez® O-rings.

Accuracy of a rotameter

Laboratory rotameters can be calibrated to an accuracy of 0.50% AR over a 4:1 range, while the inaccuracy of industrial rotameters is typically 1-2% FS over a 10:1 range. Purge and bypass rotameter errors are in the 5% range.

Rotameters can be used to manually set flow rates by adjusting the valve opening while observing the scale to establish the required process flow rate. If operating conditions remain unaltered, rotameters can be repeatable to within 0.25% of the actual flow rate.

Most rotameters are relatively insensitive to viscosity variations. The most sensitive are very small rotameters with ball floats, while larger rotameters are less sensitive to viscosity effects. The limitations of each design are published by the manufacturer (Figure 2-18). The float shape does affect the viscosity limit. If the viscosity limit is exceeded, the indicated flow must be corrected for viscosity.

Because the float is sensitive to changes in fluid density, a rotameter can be furnished with two floats (one sensitive to density, the other to velocity) and used to approximate the mass flow rate. The more closely the float density matches the fluid density, the greater the effect of a fluid density change will be on the float position. Mass-flow rotameters work best with low viscosity fluids such as raw sugar juice, gasoline, jet fuel, and light hydrocarbons.

Rotameter accuracy is not affected by the upstream piping configuration. The meter also can be installed directly after a pipe elbow without adverse effect on metering accuracy. Rotameters are inherently self cleaning because, as the fluid flows between the tube wall and the float, it produces a scouring action that tends to prevent the buildup of foreign matter. Nevertheless, rotameters should be used only on clean fluids which do not coat the float or the tube. Liquids with fibrous materials, abrasives, and large particles should also be avoided.