Introduction to Thermocouples and Thermocouple Assemblies

What is a thermocouple?
A thermocouple is a temperature sensor consisting of two dissimilar metal wires, joined at one end, and connected to a thermocouple thermometer or other thermocouple-capable device at the other end. When properly configured, thermocouples can provide temperature measurements over wide range of temperatures.

What are the different thermocouple types?
Thermocouples are available in different combinations of metals or “calibrations”. The most common are the “Base Metal” thermocouples known as Types J, K, T, E and N. There are also some special thermocouples known as Types J, K, T, and E. These are Noble Metal thermocouples, which include types C, G and D.

How do I choose a thermocouple type?
Thermocouples are typically selected based on the following conditions:
• Temperature range
• Accuracy
• Process Compatibility (Chemical and Mechanical)
• Instrument Compatibility

How do I know which junction type to choose?
Sheathed thermocouple types are available in three junction styles, grounded, ungrounded and exposed.

Operating Atmosphere—Typical Sheath Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Maximum Temperature</th>
<th>Application Atmosphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>304, 310, 316, and 321 SS</td>
<td>900°C (1650°F)</td>
<td>Very Good</td>
</tr>
<tr>
<td>Inconel® 600</td>
<td>1150°C (2100°F)</td>
<td>Very Good</td>
</tr>
<tr>
<td>Super OMEGACLAD® XL</td>
<td>1335°C (2440°F)</td>
<td>Excellent</td>
</tr>
<tr>
<td>Platinum-Rhodium Alloy</td>
<td>1650°C (3000°F)</td>
<td>Very Good</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>2200°C (4000°F)</td>
<td>Not Rec.</td>
</tr>
<tr>
<td>Tantalum</td>
<td>2300°C (4200°F)</td>
<td>Not Rec.</td>
</tr>
</tbody>
</table>

Delivery: Off-the-shelf. Other sheaths are available; call for price and delivery.

Dual Elements: Thermocouples with a sheath diameter of 1 mm (0.040”) through 6 mm (¼”) are available in dual element.

Accuracy: The wires used in OMEGACLAD® thermocouples are selected and matched to meet ANSI Limits of Error. Special limits of error thermocouples can be made from 0.25 mm (0.010”) OD to 9.5 mm (0.375”) OMEGACLAD® thermocouple wire. ANSI Polarity*: In the thermocouple industry, standard practice is to color the negative lead red. Other standards that OMEGACLAD® uses are: the negative lead of bare wire thermocouple is approximately 6 mm (¼”) shorter than the positive lead, and the large pin on a thermocouple connector is always the negative conductor. *IEC polarity—standard practice is to color the negative lead white.

Extension Wire: Thermocouple alloy wire is always be used to connect a thermocouple sensor to the instrumentation to ensure accurate measurements.

OMEGACLAD® Specifications
Diameters: Standard diameters: 0.25 mm (0.010”), 0.5 mm (0.020”), 0.75 mm (0.032”), 1 mm (0.040”), 1.5 mm (½”), 3 mm (¾”), 4.5 mm (¾”), and 6 mm (1”) wires are available; call for price and delivery. Standard OMEGACLAD® sheath materials are available in three junction styles, grounded, ungrounded and exposed. Other lengths are available.

Sheaths: 304 SS and Inconel® are standard. Other sheath materials are available; call for price and availability.

Insulation: High-purity magnesium oxide is standard. Minimum insulation resistance wire to wire or wire to sheath is 1000 MΩ at 500 Vdc in diameters above 1.5 mm (½”)

Calibration: Iron-constantan (J), CHROME®-ALOMEGA® (K), copper-constantan (T), and CHROMEL®-ALOMEGA® (E) are standard calibrations.

Bending: Easily bent and formed. Bend radius should be not less than twice the diameter of the sheath.

What is response time?
Response time, also known as the sensor time constant, is the time required for a sensor to respond to a step change in temperature. This is normally defined under a set of conditions such as “the 63.2% response in water flowing at 3 feet per second”. The 63.2% value (also known as the primary time constant) is the most common, but 50% and 90% values may also be used. The response time is a comparison measure of how quickly a sensor will indicate a change in temperature conditions, and is usually a component in determining a system response time. See Page Z-52 for typical thermocouple response times.

Room Temperature Insulation Resistance

<table>
<thead>
<tr>
<th>Nominal Sheath</th>
<th>Applied DC Voltage Min</th>
<th>Insulation Resistance Min</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.80 (0.03)</td>
<td>50 V</td>
<td>100 MΩ</td>
</tr>
<tr>
<td>0.80 to 1.5</td>
<td>50 V to 0.059</td>
<td>500 MΩ</td>
</tr>
<tr>
<td>>1.5 (0.059)</td>
<td>500 V to 1000 MΩ</td>
<td></td>
</tr>
</tbody>
</table>

(Place the existing grounded, ungrounded and exposed junction diagrams and text here, and insulation resistance table within the ungrounded section)

What is a grounded junction?
A grounded junction is recommended for the measurement of static or flowing corrosive gas and liquid temperatures and for high-pressure applications. The grounded junction is welded to the protective sheath, giving faster response than the ungrounded junction type.

What is an ungrounded junction?
An ungrounded junction is used for the measurement of static or flowing non-corrosive gas temperatures where fast response time is required. The junction extends beyond the protective metallic sheath to give accurate, fast response. The sheath is sealed where the junction extends to prevent penetration of moisture or gas, which could cause errors.